PRELIMINARY COMMUNICATION

The carbonation of unsaturated organoaluminum compounds

Recent communications ${ }^{1,2}$ on some reactions of methyllithium adducts of alkyl-substituted vinylaluminum compounds have prompted us to report our own findings bearing on the scope and limitations of the carbonation of vinylaluminum compounds themselves ${ }^{3}$. Thus, the addition of diisobutylaluminum hydrides to alkynes (I) occurs stereospecifically cis ${ }^{4.5}$, to give vinylalanes (II), which with carbon dioxide directly undergo a preferential* reaction at the vinyl carbon-aluminum bond to give the corresponding acid (III) with complete retention of geometrical configuration:

(Ia, R=R' $=\mathrm{C}_{6} \mathrm{H}_{5}$;
(II)

Ib, $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{C}_{2} \mathrm{H}_{5}$;
Ic, $\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{R}^{\prime}=\mathrm{H}$)
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$

(III)

In a typical experiment a solution of 0.056 mole of diphenylacetylene and 0.056 mole of diisobutylaluminum hydride in 100 ml of heptane was maintained at room temperature for 24 h and then at 50° for 4 h . Dry carbon dioxide gas was passed into the yellow solution without heating and the resulting reaction mixture was hydrolyzed with $2 N$ hydrochloric acid. A 96% yield of cis- α-phenylcinnamic acid, m.p. 177°, was obtained (based upon unrecovered alkyne). Gas chromatographic analysis of the methyl ester (via diazomethane) of the unrecrystallized acid showed it to be a single substance. Similarly, 3-hexyne and 1-hexyne gave the corresponding alkenoic acids (resultants of cis-hydrocarboxylation) in isolated yields of 60% and 35%, respectively. Thus, a convenient method for the stereospecific synthesis of alkenoic acids from terminal alkynes and symmetrical internal alkynes is at hand.

Attempts to prepare the trans-aluminum adducts by isomerizing the initially formed cis-vinylaluminum adducts (II) by heating (II) with diisobutylaluminum hydride ${ }^{5}$ led to double bond migration with the 3-hexenyl system (IIb). A mixture of 2- and 3-hexenes resulted upon hydrolysis. The parallel isomerization attempt with

[^0]the stilbenyl system (IIa) gave an $84: 16$ mixture of trans- and cis-stilbenes upon hydrolysis. In an unexpected fashion, however, this $84: 16$ mixture of trans- and cisstilbenyl(diisobutyl)aluminums underwent carbonation at room temperature to yield 16% of the cis- α-phenylcinnamic acid (ca. quantitative), 8% of the trans-acid and trans-stilbene. Prolonged carbonation at $90^{\circ}(8 \mathrm{~h})$ yielded only 20% of trans-acid (analysis by GLC of methyl esters). These results reveal a unique case of striking rate differences for the carbonation of organometallic geometrical isomers. It is tempting to view the lower reactivity of the trans-stilbenylaluminum system as due to steric interference with a four-center transition state requiring copolanarity of the vinyl π-orbital and the available aluminum 3 p-orbital. Although such a view must be tested critically in further studies, the lower reactivity of trans-IIa in other reactions fits this interpretation.

Acknowledgements

We wish to express our appreciation to the Public Health Service for support of this research under Grant GM-13421.

Department of Chemistry
John J. Eisch
The Catholic University of America
Michael W. Foxton
Washington, D. C. 20017 (U.S.A.)
1 G. Zweifel and R. B. Steele, J. Amer. Chem. Soc., 89 (1967) 5085.
2 G. Zweifel and R. B. Steele, J. Amer. Chem. Soc., 89 (1967) 2754.
3 J. J. Elsch and M. W. Foxton, Amer. Chem. Soc. Maryland Meeting-in-Miniaure, May 5, 1967, Baltimore (Md.); I.U.P.A.C. 3rd Intern. Symp. Organometal. Chem., September 1, 1967, Munich (Germany).
4 G. Wilke and H. Müller, Chem. Ber., 89 (1956) 444.
5 J. J. Eisch and W. C. Kaska, J. Amer. Chem. Soc.. 88 (1966) 2213.
6 K. Ziegler, F. Krupp, K. Weyer and W. Larbig, Ann. Chem., 629 (1960) 251.

Received October 6th, 1967
J. Organometal. Chem., 11 (1968) P7-P8

[^0]: * $C f$. ref. 6 for the carbonation of one carbon-aluminum bond in triethylaluminum.

